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LETTER TO THE EDITOR

Off-diagonal matrix elements in the semiclassical limit

Stephan De Bievre† and Jacques Renaud‡
Laboratoire de Physique Théorique et Math́ematique, Université Paris VII, 2 place Jussieu,
F-75251 Paris Cedex 05, France

Received 22 July 1996, in final form 12 September 1996

Abstract. We give a very simple proof of the convergence of the non-diagonal Wigner
functions of the harmonic oscillator eigenstatesWn,n+k(A, φ) to δ(A − A0)eikφ in the
semiclassical limitn → ∞, h̄ → 0 andnh̄ = A.

It is well known and proved in great generality [C] that for a completely integrable system,
the eigenfunctions concentrate on the classical torus at high energy. This means that the
diagonal matrix elements of the Weyl quantized observableFW tend to the mean value of
the classical observableF on the torusA = A0 whenh̄ → 0 andnh̄ → A0:

〈n|FW |n〉 −→
∫
A=A0

F(A, φ) dφ.

In view of their definition, this is equivalent to the fact that the Wigner functionsWn,n(A, φ)

tend to the distributionδ(A−A0). There is also a ‘folk theorem’ stating that the non-diagonal
matrix elements tend to the Fourier coefficients ofF :

〈n|FW |n+ k〉 −→
∫
A=A0

F(A, φ)eikφ dφ (1)

Equivalently

Wn,n+k(A, φ) −→ δ(A− A0)e
ikφ.

In the case of the harmonic oscillator, this can be verified easily whenF is a polynomial
(see for instance [BV] for a short proof). Recently, Ripamonti proved this result for smooth
observables [R]. Her proof is based on the explicit expression of theWn,n+k computed in
the Bargman representation. Since theWn,n+k are Laguerre polynomials of ordern, the
limit n → ∞ involves a long and difficult calculation using the asymptotic properties of
the Laguerre polynomials. We propose in this letter a very simple proof of the same result.
Our proof uses the properties of the anti-normal quantization, which fits better with the
Bargman representation, to prove eventually the result (1) for Weyl quantization.

Let

H(q, p) =
d∑
i=1

1

2
(p2

i + ω2
i q

2
i )
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be the classical Hamiltonian of thed-dimensional harmonic oscillator on the phase space
R2d = T∗Rd . We identifyR2d with Cd via

zi = ωiqi + ipi√
2ωi

.

The action and angle variables are defined byzi = √
Aieiφi or z = √

Aeiφ for short. The
energy now reads

E =
d∑
i=1

ωiAi = ω · A. (2)

The classical trajectories in phase space are the poly-circlesA = constant. For any classical
observableF(z) = F(A, φ) we denote by〈F 〉A the mean value ofF on the classical
trajectory|zi | = √

Ai :

〈F 〉A = 1

(2π)d

∫
F(A1, . . . , Ad, φ1, . . . , φd) dφ1 · · · dφd = 1

(2π)d

∫
F(A, φ) dφ.

The Hilbert space of quantum states can be realized onCd as a space of entire functions:

B =
{
f ; f entire onCd ,

∫
|f (z)|2e−|z|2/h̄ dz dz̄

(πh̄)d
< ∞

}
wherez = (z1, . . . , zd), dz dz̄ is the Lebesgue measure onCd , and |z|2 = ∑d

i=1 |zi |2. On
this space the quantized Hamiltonian is given by

H =
d∑
i=1

ωi

(
h̄zi

∂

∂zi
+ h̄

2

)
.

The normalized steady states are given by

〈z|n〉 = zn√
n!h̄|n|/2

where here and hereaftern = (n1, . . . , nd) is a multi-index andzn = z
n1
1 · · · zndd , n! =

n1! · · · nd ! and |n| = ∑d
i=1 ni . The energy of this state is given by

En = 〈n|H|n〉

=
d∑
i=1

(ni + 1
2)h̄ωi

= h̄
(
n+ {

1
2

}) · ω (3)

where
{

1
2

}
is the multi-index defined by

{
1
2

} = (
1
2, . . . ,

1
2

)
.

The Weyl–Wigner correspondence allows construction of a quantum observableFW

corresponding to any smooth classical observableF (say in C∞
0 (R2d)). We now state the

main result.

Theorem 1.Let F andFW be as above. Letn andk be multi-indices. Suppose thatn → ∞
andh̄ → 0 in such a way that(n+ { 1

2})h̄ → A (see equations (2) and (3)), then

〈n|FW |n+ k〉 →
∫
A=A0

F(A, φ)eik·φ dφ

(2π)d

or equivalently

Wn,n+k(A, φ) → δ(A− A0)e
ik·φ.
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Proof. We recall first the definition of the anti-normal (or anti-Wick) quantization. LetF

be a classical observable as above. We define the anti-normal quantum observableFAN as
follows: (

FANψ
)
(z) =

∫
ew̄·z/h̄F (w)ψ(w)e−|w|2/h̄ dw dw̄

(πh̄)d

for anyψ ∈ B. It is well known that the anti-normal and Weyl quantizations are equivalent
in the limit h̄ → 0. More precisely, one has [HMR] that for any classical observable as
aboveFW − FAN → 0 in the operator norm sense when ¯h → 0: ‖FW − FAN‖L(B,B) → 0.
Since the states|n〉 are normalized, it follows from this that

lim〈n|FW |n+ k〉 = lim〈n|FAN |n+ k〉.
As a result, we just have to calculate the limit on the right-hand-side. This turns out to
be much easier than dealing directly with the left-hand-side, as is done in [R]. A standard
calculation now gives:

〈n|FAN |n+ k〉 =
∫

〈n|z〉〈z|FAN |n+ k〉e−|z|2/h̄ dz dz̄

(πh̄)d

=
∫

w̄n√
n! h̄|n|/2F(w)

wn+k√
n+ k! h̄|n+k|/2 e−|w|2/h̄ dw dw̄

(πh̄)d
.

We transform this integral using action-angle coordinates: more precisely, let(v, φ) be new
variables defined byw = √

Aveiφ , that is to saywi = √
Aivieiφi for i = 1, . . . , d. Then

〈n|FAN |n+ k〉 =
∫ (√

vAe−iφ
)n

√
n! h̄|n|/2 F(vA, φ)

(√
vAeiφ

)n+k
√
(n+ k)! h̄|n+k|/2 e−A·v/h̄A{1} dv dφ

(2πh̄)d

=
∫
vn+k/2An+k/2+{1} eik·φF (vA, φ)e−A·v/h̄

√
n!

√
(n+ k)! h̄|n|+|k|/2+d

dv dφ

(2π)d

where {1} is the multi-index(1, . . . ,1). Since we have(n + { 1
2})h̄ → A, we can write

A = nanh̄, i.e. Ai = ani nih̄ wherean = (an1, . . . , and ) → (1, . . . ,1) when n → ∞, we
obtain:

〈n|FAN |n+ k〉 =
∫
vn
(nan)

n+k/2+{1}
√
n!

√
(n+ k)!

e−(nan)·v eik·φF (vA, φ)vk/2
dv dφ

(2π)d
.

In order to conclude we just have to prove, in the sense of distributions, that

vn
(nan)

n+k/2+{1}
√
n!

√
(n+ k)!

e−(nan)·v n→∞−→ δ(v − {1})

that is to say, coordinate by coordinate:

v
ni
i

(niani )
ni+k/2+1

√
ni !

√
(ni + ki)!

e−(niani )vi ni→∞−→ δ(vi − 1).

This follows from an elementary calculation. Applying this result we obtain

〈n|FAN |n+ k〉 →
∫

eik·φF (vA, φ)
dφ

(2π)d

which proves the theorem. �
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