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Off-diagonal matrix elements in the semiclassical limit
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F-75251 Paris Cedex 05, France
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Abstract. We give a very simple proof of the convergence of the non-dﬁagonal Wigner
functions of the harmonic oscillator eigenstatés, , (A, $) to (A — Ag)é*? in the
semiclassical limits — oo, & — 0 andnh = A.

It is well known and proved in great generality [C] that for a completely integrable system,
the eigenfunctions concentrate on the classical torus at high energy. This means that the
diagonal matrix elements of the Weyl quantized observabletend to the mean value of

the classical observablg on the torusA = Ag when/s — 0 andnh — Agq:

(n|F¥|n) — F(A, ¢) do.
A=A
In view of their definition, this is equivalent to the fact that the Wigner functidhs (A, ¢)
tend to the distributiod (A— Ag). There is also a ‘folk theorem’ stating that the non-diagonal
matrix elements tend to the Fourier coefficientsrof

(n|FVn + k) — F(A, $)é* dg (1)

A=A

Equivalently
Wnii(A, §) —> 8(A — Ag)€r?.

In the case of the harmonic oscillator, this can be verified easily whés a polynomial
(see for instance [BV] for a short proof). Recently, Ripamonti proved this result for smooth
observables [R]. Her proof is based on the explicit expression o#ithg,, computed in
the Bargman representation. Since g ,., are Laguerre polynomials of order the
limit n — oo involves a long and difficult calculation using the asymptotic properties of
the Laguerre polynomials. We propose in this letter a very simple proof of the same result.
Our proof uses the properties of the anti-normal quantization, which fits better with the
Bargman representation, to prove eventually the result (1) for Weyl quantization.

Let

d
1
H(g. p)=) é(p,-2 + w?g?)
i=1
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be the classical Hamiltonian of thedimensional harmonic oscillator on the phase space
R = T*R?. We identify R* with C¢ via
_wiqi +ip;

P =
2(1),'

The action and angle variables are definedzpy= /A;€% or z = «/A€? for short. The
energy now reads

E = (,(),'Al' =w-A. (2)

d
i=1
The classical trajectories in phase space are the poly-cifclesconstant. For any classical

observableF(z) = F(A, ¢) we denote by(F), the mean value off on the classical
trajectory|z;| = VA, :

1
(Fla= g [ F1 oo Aabr i) dor-dos = o [P0 do.

The Hilbert space of quantum states can be realized“as a space of entire functions:

2 Oz dz
B=1f; f entire onC, /|f(z)|2€f|z\ mp o
(h)
wherez = (z1, ..., z4), dz 07 is the Lebesgue measure @4, and|z|? = Y7, |z|% On
this space the quantized Hamiltonian is given by

d R
_ 0 h
H = E_l w; <hZi32' + 2) .

1

The normalized steady states are given by

n

Z

(zln) = WA
where here and hereafter = (n1,...,n,) is a multi-index andz” = z3*---z)¢, n! =
ni!---ngtand|n| = Z;’Zlni. The energy of this state is given by
E, = (n|H|n)
d
= Z(”i + Dho
i=1
=hi(n+{3}) o (3
where{}} is the multi-index defined by} = (3..... ).

The Weyl-Wigner correspondence allows construction of a quantum obserFéble
corresponding to any smooth classical observablésay in CgO(IR{Zd)). We now state the
main result.

Theorem 1.Let F and F% be as above. Let andk be multi-indices. Suppose that— oo
andi — 0 in such a way thatn + {3})i — A (see equations (2) and (3)), then

iy d9
FVn+k F(A, p)eh?
(n|F¥n+k) — s (A, ¢) 2n)d

or equivalently
‘/Vn,n-‘rk(Av ¢) - S(A - Ao)ék'¢.
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Proof. We recall first the definition of the anti-normal (or anti-Wick) quantization. Eet
be a classical observable as above. We define the anti-normal quantum obsé&r/atze
follows:

o ~dw dw
AN _ -z /h —|w|?/h
(F I//) (z) = /e F(w)y (w)e W
for anyy € B. It is well known that the anti-normal and Weyl quantizations are equivalent
in the limit # — 0. More precisely, one has [HMR] that for any classical observable as
aboveF" — FAN — 0 in the operator norm sense when> 0: |FY — FAN| ;.5 — O.
Since the statel:) are normalized, it follows from this that

limn|FY|n + k) = lim@n|FAN |n + k).

As a result, we just have to calculate the limit on the right-hand-side. This turns out to
be much easier than dealing directly with the left-hand-side, as is done in [R]. A standard
calculation now gives:

dz dz

(| FAN|n + k) = / (nle) (@ PV |+ e =

w" w"tk i Gw dw
= ———F(w) = e .
2 /n + kI Rin+kl/2 (h)?
We transform this integral using action-angle coordinates: more precisely, gt be new
variables defined by = v/ Av€?, that is to sayw; = «/A;v;€% fori =1,...,d. Then

A —ip)" Ae'¢ n+k B
(nlF* 0 + k) =f(”_e)F(vA,¢) (od ) e A Al dv d
Vnl R VR (2rhy!

VI HkI2 gntk/2 L gkt By A, g)e A/ d dep

Vil F k) K2+ @)

where {1} is the multi-index(l, ..., 1). Since we havdn + {%})17 — A, we can write
A = na,h, i.e. A; = a,n;h wherea, = (a,,,...,a,,) — (1,...,1) whenn — oo, we
obtain:

. (nan)n+k/2+{l}

Sl NCEY3)

In order to conclude we just have to prove, in the sense of distributions, that

x2 Qv dop
2m)*

(n|F*Nn + k) = e v dkt A gy

o O e o 5, qay)
Vil + 1!
that is to say, coordinate by coordinate:
This follows from an elementary calculation. Applying this result we obtain
(n|F*n + k) —> /é""i’F(vA,qs)dl
(2m)d

which proves the theorem. O
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