Off-diagonal matrix elements in the semiclassical limit

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1996 J. Phys. A: Math. Gen. 29 L585
(http://iopscience.iop.org/0305-4470/29/23/001)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.70
The article was downloaded on 02/06/2010 at 04:04

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Off-diagonal matrix elements in the semiclassical limit

Stephan De Bievre \dagger and Jacques Renaud \ddagger
Laboratoire de Physique Théorique et Mathématique, Université Paris VII, 2 place Jussieu F-75251 Paris Cedex 05, France

Received 22 July 1996, in final form 12 September 1996

Abstract

We give a very simple proof of the convergence of the non-diagonal Wigner functions of the harmonic oscillator eigenstates $W_{n, n+k}(A, \phi)$ to $\delta\left(A-A_{0}\right) \mathrm{e}^{\mathrm{i} k \phi}$ in the semiclassical limit $n \rightarrow \infty, \hbar \rightarrow 0$ and $n \hbar=A$.

It is well known and proved in great generality [C] that for a completely integrable system, the eigenfunctions concentrate on the classical torus at high energy. This means that the diagonal matrix elements of the Weyl quantized observable F^{W} tend to the mean value of the classical observable F on the torus $A=A_{0}$ when $\hbar \rightarrow 0$ and $n \hbar \rightarrow A_{0}$:

$$
\langle n| F^{W}|n\rangle \longrightarrow \int_{A=A_{0}} F(A, \phi) \mathrm{d} \phi .
$$

In view of their definition, this is equivalent to the fact that the Wigner functions $W_{n, n}(A, \phi)$ tend to the distribution $\delta\left(A-A_{0}\right)$. There is also a 'folk theorem' stating that the non-diagonal matrix elements tend to the Fourier coefficients of F :

$$
\begin{equation*}
\langle n| F^{W}|n+k\rangle \longrightarrow \int_{A=A_{0}} F(A, \phi) \mathrm{e}^{\mathrm{i} k \phi} \mathrm{~d} \phi \tag{1}
\end{equation*}
$$

Equivalently

$$
W_{n, n+k}(A, \phi) \longrightarrow \delta\left(A-A_{0}\right) \mathrm{e}^{\mathrm{i} k \phi} .
$$

In the case of the harmonic oscillator, this can be verified easily when F is a polynomial (see for instance [BV] for a short proof). Recently, Ripamonti proved this result for smooth observables $[\mathrm{R}]$. Her proof is based on the explicit expression of the $W_{n, n+k}$ computed in the Bargman representation. Since the $W_{n, n+k}$ are Laguerre polynomials of order n, the limit $n \rightarrow \infty$ involves a long and difficult calculation using the asymptotic properties of the Laguerre polynomials. We propose in this letter a very simple proof of the same result. Our proof uses the properties of the anti-normal quantization, which fits better with the Bargman representation, to prove eventually the result (1) for Weyl quantization.

Let

$$
H(q, p)=\sum_{i=1}^{d} \frac{1}{2}\left(p_{i}^{2}+\omega_{i}^{2} q_{i}^{2}\right)
$$

[^0]be the classical Hamiltonian of the d-dimensional harmonic oscillator on the phase space $\mathbb{R}^{2 d}=\mathrm{T}^{*} \mathbb{R}^{d}$. We identify $\mathbb{R}^{2 d}$ with \mathbb{C}^{d} via
$$
z_{i}=\frac{\omega_{i} q_{i}+\mathrm{i} p_{i}}{\sqrt{2 \omega_{i}}}
$$

The action and angle variables are defined by $z_{i}=\sqrt{A_{i}} \mathrm{e}^{\mathrm{i} \phi_{i}}$ or $z=\sqrt{A} \mathrm{e}^{\mathrm{i} \phi}$ for short. The energy now reads

$$
\begin{equation*}
E=\sum_{i=1}^{d} \omega_{i} A_{i}=\omega \cdot A \tag{2}
\end{equation*}
$$

The classical trajectories in phase space are the poly-circles $A=$ constant. For any classical observable $F(z)=F(A, \phi)$ we denote by $\langle F\rangle_{A}$ the mean value of F on the classical trajectory $\left|z_{i}\right|=\sqrt{A_{i}}$:
$\langle F\rangle_{A}=\frac{1}{(2 \pi)^{d}} \int F\left(A_{1}, \ldots, A_{d}, \phi_{1}, \ldots, \phi_{d}\right) \mathrm{d} \phi_{1} \cdots \mathrm{~d} \phi_{d}=\frac{1}{(2 \pi)^{d}} \int F(A, \phi) \mathrm{d} \phi$.
The Hilbert space of quantum states can be realized on \mathbb{C}^{d} as a space of entire functions:

$$
\mathcal{B}=\left\{f ; f \text { entire on } \mathbb{C}^{d}, \int|f(z)|^{2} \mathrm{e}^{-|z|^{2} / \hbar} \frac{\mathrm{d} z \mathrm{~d} \bar{z}}{(\pi \hbar)^{d}}<\infty\right\}
$$

where $z=\left(z_{1}, \ldots, z_{d}\right), \mathrm{d} z \mathrm{~d} \bar{z}$ is the Lebesgue measure on \mathbb{C}^{d}, and $|z|^{2}=\sum_{i=1}^{d}\left|z_{i}\right|^{2}$. On this space the quantized Hamiltonian is given by

$$
\mathcal{H}=\sum_{i=1}^{d} \omega_{i}\left(\hbar z_{i} \frac{\partial}{\partial z_{i}}+\frac{\hbar}{2}\right)
$$

The normalized steady states are given by

$$
\langle z \mid n\rangle=\frac{z^{n}}{\sqrt{n!} \hbar^{|n| / 2}}
$$

where here and hereafter $n=\left(n_{1}, \ldots, n_{d}\right)$ is a multi-index and $z^{n}=z_{1}^{n_{1}} \cdots z_{d}^{n_{d}}, n!=$ $n_{1}!\cdots n_{d}!$ and $|n|=\sum_{i=1}^{d} n_{i}$. The energy of this state is given by

$$
\begin{align*}
E_{n} & =\langle n| \mathcal{H}|n\rangle \\
& =\sum_{i=1}^{d}\left(n_{i}+\frac{1}{2}\right) \hbar \omega_{i} \\
& =\hbar\left(n+\left\{\frac{1}{2}\right\}\right) \cdot \omega \tag{3}
\end{align*}
$$

where $\left\{\frac{1}{2}\right\}$ is the multi-index defined by $\left\{\frac{1}{2}\right\}=\left(\frac{1}{2}, \ldots, \frac{1}{2}\right)$.
The Weyl-Wigner correspondence allows construction of a quantum observable F^{W} corresponding to any smooth classical observable F (say in $\mathcal{C}_{0}^{\infty}\left(\mathbb{R}^{2 d}\right)$). We now state the main result.
Theorem 1. Let F and F^{W} be as above. Let n and k be multi-indices. Suppose that $n \rightarrow \infty$ and $\hbar \rightarrow 0$ in such a way that $\left(n+\left\{\frac{1}{2}\right\}\right) \hbar \rightarrow A$ (see equations (2) and (3)), then

$$
\langle n| F^{W}|n+k\rangle \rightarrow \int_{A=A_{0}} F(A, \phi) \mathrm{e}^{\mathrm{i} k \cdot \phi} \frac{\mathrm{~d} \phi}{(2 \pi)^{d}}
$$

or equivalently

$$
W_{n, n+k}(A, \phi) \rightarrow \delta\left(A-A_{0}\right) \mathrm{e}^{\mathrm{i} k \cdot \phi}
$$

Proof. We recall first the definition of the anti-normal (or anti-Wick) quantization. Let F be a classical observable as above. We define the anti-normal quantum observable $F^{A N}$ as follows:

$$
\left(F^{A N} \psi\right)(z)=\int \mathrm{e}^{\bar{w} \cdot z / \hbar} F(w) \psi(w) \mathrm{e}^{-|w|^{2} / \hbar} \frac{\mathrm{d} w \mathrm{~d} \bar{w}}{(\pi \hbar)^{d}}
$$

for any $\psi \in \mathcal{B}$. It is well known that the anti-normal and Weyl quantizations are equivalent in the limit $\hbar \rightarrow 0$. More precisely, one has [HMR] that for any classical observable as above $F^{W}-F^{A N} \rightarrow 0$ in the operator norm sense when $\hbar \rightarrow 0:\left\|F^{W}-F^{A N}\right\|_{\mathcal{L}(\mathcal{B}, \mathcal{B})} \rightarrow 0$. Since the states $|n\rangle$ are normalized, it follows from this that

$$
\lim \langle n| F^{W}|n+k\rangle=\lim \langle n| F^{A N}|n+k\rangle .
$$

As a result, we just have to calculate the limit on the right-hand-side. This turns out to be much easier than dealing directly with the left-hand-side, as is done in $[\mathrm{R}]$. A standard calculation now gives:

$$
\begin{aligned}
\langle n| F^{A N}|n+k\rangle & =\int\langle n \mid z\rangle\langle z| F^{A N}|n+k\rangle \mathrm{e}^{-|z|^{2} / \hbar} \frac{\mathrm{d} z \mathrm{~d} \bar{z}}{(\pi \hbar)^{d}} \\
& =\int \frac{\bar{w}^{n}}{\sqrt{n!} \hbar^{|n| / 2}} F(w) \frac{w^{n+k}}{\sqrt{n+k!} \hbar^{|n+k| / 2}} \mathrm{e}^{-|w|^{2} / \hbar} \frac{\mathrm{d} w \mathrm{~d} \bar{w}}{(\pi \hbar)^{d}} .
\end{aligned}
$$

We transform this integral using action-angle coordinates: more precisely, let (v, ϕ) be new variables defined by $w=\sqrt{A v} \mathrm{e}^{\mathrm{i} \phi}$, that is to say $w_{i}=\sqrt{A_{i} v_{i}} \mathrm{e}^{\mathrm{i} \phi_{i}}$ for $i=1, \ldots, d$. Then

$$
\begin{aligned}
\langle n| F^{A N}|n+k\rangle & =\int \frac{\left(\sqrt{v A} \mathrm{e}^{-\mathrm{i} \phi}\right)^{n}}{\sqrt{n!} \hbar^{|n| / 2}} F(v A, \phi) \frac{\left(\sqrt{v A} \mathrm{e}^{\mathrm{i} \phi}\right)^{n+k}}{\sqrt{(n+k)!} \hbar^{|n+k| / 2}} \mathrm{e}^{-A \cdot v / \hbar} A^{\{1\}} \frac{\mathrm{d} v \mathrm{~d} \phi}{(2 \pi \hbar)^{d}} \\
& =\int \frac{v^{n+k / 2} A^{n+k / 2+\{1\}} \mathrm{e}^{\mathrm{i} k \cdot \phi} F(v A, \phi) \mathrm{e}^{-A \cdot v / \hbar}}{\sqrt{n!} \sqrt{(n+k)!} \hbar^{|n|+|k| / 2+d}} \frac{\mathrm{~d} \phi}{(2 \pi)^{d}}
\end{aligned}
$$

where $\{1\}$ is the multi-index $(1, \ldots, 1)$. Since we have $\left(n+\left\{\frac{1}{2}\right\}\right) \hbar \rightarrow A$, we can write $A=n a_{n} \hbar$, i.e. $A_{i}=a_{n_{i}} n_{i} \hbar$ where $a_{n}=\left(a_{n_{1}}, \ldots, a_{n_{d}}\right) \rightarrow(1, \ldots, 1)$ when $n \rightarrow \infty$, we obtain:

$$
\langle n| F^{A N}|n+k\rangle=\int v^{n} \frac{\left(n a_{n}\right)^{n+k / 2+\{1\}}}{\sqrt{n!} \sqrt{(n+k)!}} \mathrm{e}^{-\left(n a_{n}\right) \cdot v} \mathrm{e}^{\mathrm{i} k \cdot \phi} F(v A, \phi) v^{k / 2} \frac{\mathrm{~d} v \mathrm{~d} \phi}{(2 \pi)^{d}}
$$

In order to conclude we just have to prove, in the sense of distributions, that

$$
v^{n} \frac{\left(n a_{n}\right)^{n+k / 2+\{1\}}}{\sqrt{n!} \sqrt{(n+k)!}} \mathrm{e}^{-\left(n a_{n}\right) \cdot v} \xrightarrow{n \rightarrow \infty} \delta(v-\{1\})
$$

that is to say, coordinate by coordinate:

$$
v_{i}^{n_{i}} \frac{\left(n_{i} a_{n_{i}}\right)^{n_{i}+k / 2+1}}{\sqrt{n_{i}!} \sqrt{\left(n_{i}+k_{i}\right)!}} \mathrm{e}^{-\left(n_{i} a_{n_{i}}\right) v_{i}} \xrightarrow{n_{i} \rightarrow \infty} \delta\left(v_{i}-1\right) .
$$

This follows from an elementary calculation. Applying this result we obtain

$$
\langle n| F^{A N}|n+k\rangle \rightarrow \int \mathrm{e}^{\mathrm{i} k \cdot \phi} F(v A, \phi) \frac{\mathrm{d} \phi}{(2 \pi)^{d}}
$$

which proves the theorem.

References

[BV] Belissard J and Vittot M 1990 Heisenberg's picture and non commutative geometry of the semi classical limit in quantum mechanics Ann. Inst. H Poincaré 52 175-235
[C] Charbonnel A-M 1992 Comportement semi-classique des systèmes ergodiques Ann. Inst. H Poincaré 56 187-214
[HMR] Helffer B, Martinez A and Robert D 1987 Ergodicité et limite semi-classique Commun. Math. Phys. 109 313-26
[R] Ripamonti N 1996 Classical limit of the harmonic oscillator Wigner functions in the Bargman representation J. Phys. A: Math. Gen. to appear

[^0]: \dagger E-mail address: debievre@mathp7.jussieu.fr ; UFR de Mathématiques, Université Paris VII
 \ddagger E-mail address: renaud@ccr.jussieu.fr

